
Proposal of a new method for matrix
element calculation in M3D-C1 with

GPU optimization
Chang Liu

In this note, I will give a review of the current implementation of finite element sparse matrix
element calculation in M3D-C1, discussing its pros and cons, and then introduce a new method
which can be easily optimized for GPUs.

Note that we will only focus on the optimization of matrix element calculation for each element.
The parallelization for different elements are currently done with MPI and OpenMP. It may not
be possible to use the same parallelization strategy on GPU because it means each GPU
thread will have different *79 arrays, and can lead out of memory errors. In addition, it also
requires us to migrate the SCOREC library to GPU, which is a lot of work.

Review of current implementation of matrix element
calculation in M3D-C1 (or J approach)
In the current version of code, the calculation of each matrix element is composed by three
parts. The first part is the a j-loop over all the basis functions (nu79):

do j=1,dofs_per_element
call vorticity_lin(mu79,nu79(j,:,:), &
ss(:,j,:),dd(:,j,:),r_bf(:,j),q_bf(:,j),advfield,izone)

end do

The second part is inside these “lin” functions, where all the physics terms are calculated
respectively,

subroutine vorticity_lin(trialx, lin, ssterm, ddterm, r_bf, q_bf,
advfield, & izone)
...
! Time Derivative
! ~~~~~~~~~~~~~~~
tempx = v1un(trialx,lin,rho79)*freq_fac
ssterm(:,u_g) = ssterm(:,u_g) + tempx
ddterm(:,u_g) = ddterm(:,u_g) + tempx*bdf
...



end subroutine vorticity_lin

And the details of each term is described in metricterms_new.f90

! V1un
! ====
function v1un(e,f,g)

if(surface_int) then
temp = 0.

else
temp = intx4(e(:,:,OP_DR),r2_79,f(:,OP_DR),g(:,OP_1)) &

+ intx4(e(:,:,OP_DZ),r2_79,f(:,OP_DZ),g(:,OP_1))
end if

v1un = temp
end function v1un

The third part is the numerical integral, which is done in functions like intx4, and is described in

nintegrate_mode.f90,

pure function intx4(vari,varj,vark,varl)

implicit none

vectype, dimension(dofs_per_element) :: intx4
vectype, dimension(dofs_per_element, npoints), intent(in) :: vari
vectype, dimension(npoints), intent(in) :: varj, vark, varl

integer :: k

intx4 = 0.
do k=1, npoints

intx4 = intx4 + vari(:,k)*varj(k)*vark(k)*varl(k)*weight_79(k)
enddo

end function intx4

Note that the output and the first input argument of this function has dimension of dofs_per_element,

so the integral is done simultaneously for all the test functions (mu79). In fact, from the above line of

multiplication calculation, the calculation was done first for all the other terms, including weight, before

multiplying to mu79 (vari). So the estimate total number of multiplication operations is

dofs_per_element*nterm*npoints*(3+dofs_per_element) (here nterm is the number of terms in the

PDE).



The pros and cons of this method are as follows,

Pros:

The numerical integral function can be easily optimized by compilers, which has two layers of

independent loops. This means that it can reach good speed on CPUs.

Cons:

The outside loop (j-loop) can run parallely, but the number of parallel workers is too small for GPU so it

cannot reach significant speedup. In addition, for each j calculation, a lot of functions will be called and a

large number of temporary arrays will be created, which can lead to OOM on GPUs.

Introduction to I-J approach
In order to reduce the complexity of calculation of each parallel worker, and increase the
number of them, we can put both i-loop (loop over all the mu79 functions) and j-loop (loop over
all the nu79 functions) outside. The new outside loops will look like

do j=1,dofs_per_element
do j=1,dofs_per_element

call vorticity_lin(mu79(i,:,:),nu79(j,:,:), &
ss(:,j,:),dd(:,j,:),r_bf(:,j),q_bf(:,j),advfield,izone)

end do
end do

The structure of other functions does not need to be changed much, except for the datatype (the

dimension of some arrays needs to be reduced). The numerical integral function now becomes

pure function intx4(vari,varj,vark,varl)

implicit none

vectype :: intx4
vectype, dimension(npoints), intent(in) :: vari
vectype, dimension(npoints), intent(in) :: varj, vark, varl

integer :: k

intx4 = 0.
do k=1, npoints

intx4 = intx4 + vari(k)*varj(k)*vark(k)*varl(k)*weight_79(k)
enddo



end function intx4

However, in this method, the total number of multiplication operations required is

dofs_per_element*dofs_per_element*nterm*(4*npoints), which is about 4 times larger than the former

approach. The reason is that, although the matrix element calculation can be done independently for all

the test and basis functions, a lot of multiplication operations are repetitive for different i and j. I found

that running the i-j approach on CPU always leads to worse performance than the current approach (2-3

times slower).

Pros:

There are two layers of independent loops (i and j) outside which can be easily parallelized on GPUs.

There are also no OOM problems.

Cons:

The performance gets worse on the CPU. A large number of multiplication operations are unnecessary.

Separation of physics term and numerical integral
In this Hackathon I tried a different approach to combine the benefits of the above two methods.
The goal is to reach better or equal performance on CPUs, and also make the GPU optimization
easy.

As shown above, the calculation of multiplication of all the intermediate terms (varj, vark, varl,
weight79) are repetitive for all the test functions and basis functions. In fact, this work can be
done separately and the results can be stored in a temporary array. Then this array is multiplied
with all the mu79 and nu79 functions.

In this approach, we need to separate the calculation of all the physical terms in PDE and the
numerical integral calculation. The PDE terms will be calculated first and stored in a temporarily
sparse matrix, and the numerical integral will be done later. The PDE calculation is done in
functions like

subroutine vorticity_lin(nterm, term, op1, op2, ssarray, ddarray,
advfield, izone)

integer, dimension(MAX_TERMS), intent(out) :: term, op1, op2
vectype, dimension(MAX_PTS,MAX_TERMS), intent(out) :: ssarray,
ddarray

! Time Derivative
! ~~~~~~~~~~~~~~~



temp=r2_79*rho79(:,OP_1)
if (surface_int) temp=0.
ADDTERM(u_g,OP_DR,OP_DR,temp,temp)
ADDTERM(u_g,OP_DZ,OP_DZ,temp,temp)

end subroutine

Where ADDTERM is a macro and is defined as

#define ADDTERM(xterm,xop1,xop2,ssterm,ddterm) \
iterm=iterm+1; \
term(iterm)=xterm; \
op1(iterm)=xop1; \
op2(iterm)=xop2; \
ssarray(:,iterm)=ssterm*weight_79; \
ddarray(:,iterm)=ddterm*weight_79

Here ssarray and ddarray are the temporary arrays that store the results of different terms for all
the quadrature points.

The outside calculation can be done as

call vorticity_lin(nterm, term, op1, op2, ssarray, ddarray,
advfield,izone)

do iterm=1,nterm
do j=1,dofs_per_element

tempss=ssarray(:,iterm)*nu79(j,:,op2(iterm))
tempdd=ddarray(:,iterm)*nu79(j,:,op2(iterm))
do i=1,dofs_per_element

ssterm(i,j,iterm)=sum(mu79(i,:,op1(iterm))*tempss)
ddterm(i,j,iterm)=sum(mu79(i,:,op1(iterm))*tempdd)

end do
end do

end do
do i=1,dofs_per_element

do j=1,dofs_per_element
do iterm=1,nterm

ss(i,j,term(iterm))=ss(i,j,term(iterm))+ssterm(i,j,iterm)

dd(i,j,term(iterm))=dd(i,j,term(iterm))+ddterm(i,j,iterm)
end do

end do
end do



After calculating ssarray and ddarray, the results are used to multiply with nu79 and mu79. Note
that here we first do the multiplication with nu79 and store the results in tempss and tempdd,
and then do the multiplication with mu79. This is followed by a summation reduction to obtain
the final results of ss and dd. The total number of multiplication operation is
nterm*dofs_per_element*(npoints+dofs_per_element*npoints), which is even smaller than the
current implementation (j approach).

Pros:

The total number of multiplication operations required is small. The numerical integration is
done separately from the physics part. According to our measurement, most of the cpu time
(>90%) is spent on the numerical integration (two loops in the above code), thus one only needs
to do GPU optimization for these two loops. This can be easily done as the loops are mostly
independent, and the speedup is significant.

Cons:

As shown above, the calculation of all the physical terms in PDE needs to be rewritten. Basically
we need to combine ludef_t.f90 and metricterms_new.f90 and make it a big file, which is rather
complicated.

Summary
According to the tests done and what we learned from Hackathon, we can either use the I-J
approach or the new approach which separates the physics part and the numerical integration
part for the GPU optimization. The I-J approach can be easily implemented, but it can lead to
worse performance on CPUs, and mediocre performance on GPUs. The new approach is very
attractive regarding performance on both CPUs and GPUs, but it requires significant work of
code rewrite.

I think if we decide to go with the new approach, we should use python or some other
languages to write an interpreter or lexer to interpret what we have now in ludef_t.f90 and
metricterms_new.f90, and translate it into the new form. Given the difficulties in understanding
the new form by humans, we can then make this interpreter as part of our make file and do this
translation every time we make the project.


